

Метод калибровки лазерно-интерферометрических приборных комплексов на основе эффекта вынужденного рассеяния Мандельштама-Бриллюэна (ВРМБ)

XVII Международная конференция «Забабахинские научные чтения»

<u>А.А. Тавлеев</u>, П.В. Кубасов, А.А. Тихов, В.Г. Каменев, Ю.Д. Арапов

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики имени Н.Л. Духова», Москва, Россия

Актуальность работы

Используемые методики измерения скорости объектов:

Предлагаемый метод позволяет:

1) Выполнить проверку работоспособности подключаемых приборных комплексов без проведения взрывных экспериментов;

2) Провести прямое сличение экспериментальных результатов, полученных на комплексах различного производства;

3) Потенциально позволит метрологически аттестовывать лазерные измерители скорости, как средства измерения скорости.

Цель работы

<u>Целью работы</u> является создание аппаратуры и метода для диагностики и калибровки интерферометрических измерителей скорости, предназначенных для исследования процессов в газодинамических опытах, на основе определения скорости распространения звуковых колебаний в протяженных оптических волокнах.

Метод диагностики

Разработанный метод заключается в регистрации изменения спектрального сдвига отраженного назад сигнала, обусловленного вынужденным рассеянием в оптическом волокне, и последующем его пересчете в значения скорости распространения ультразвуковых волн в используемых катушках оптического волокна, используемых, как среды возбуждения калибровочных волн.

Что такое ВРМБ?

ВНИИА РОСАТОМ

Продольная волна

Звуковая волна: волна плотности, а следовательно, и показателя преломления Свет дифрагирует на «решетке» плотности, т.е. на решетке показателя преломления

Определение скорости звука в оптических волокнах

$$\mathbf{v}_A = \frac{\mathbf{v}_B \cdot \mathbf{\lambda}_p}{2\mathbf{n}_p} \qquad (1),$$

 υ_{B} — смещение частоты при ВРМБ, λ_{p} — длина волны накачки,

 n_p^- – эффективный показатель преломления на λ_p

	Показатель	ВРМБ	Слвиг			Диаметр	
Среда	преломления,	усиление,		υ _{А,} м/с	Длина, м	сердцевины _,	Порог
	n _p	м/Вт	υ _В , п ц			МКМ	ВРМБ, мВт
Воздух	1	1,7*10 ⁻¹²	0,43	331	100	9	33000
Метанол	1,328	1,3*10 ⁻¹⁰	4,25	2480	100	9	630
Ацетон	1,358	1,6*10 ⁻¹⁰	4,6	2625	100	9	520
CS ₂	1,632	6,8*10-10	5,85	2778	100	9	0,5
HNLF (GeO ₂	1,479	5,3*10-12	9,47	4970	500	4	45
- 30%)							
HNLF DS	1,479	5,3*10 ⁻¹²	9,34	4895	800	4	22
$(\text{GeO}_2 - 30\%)$							
SMF	1,528	4,5*10 ⁻¹¹	10,83	5490	25000	9	4 5
DCF	1,603	8,9*10 ⁻¹¹	9,7	4690	11130	4	4

Определение порога возникновения ВРМБ

Температурная зависимость частоты отраженного излучения

Аппроксимация

$$\frac{\Delta F}{\Delta T} \Big|_{\text{HNLF}} = 1 \left[\frac{M\Gamma \mu}{^{\circ}\text{C}} \right], \ a \frac{\Delta V}{\Delta T} \Big|_{\text{HNLF}} = 0,5 \left[\frac{M}{c \,^{\circ}\text{C}} \right] \qquad \frac{\Delta F}{\Delta T} \Big|_{\text{HNLF} \text{DS}} = 0,8 \left[\frac{M\Gamma \mu}{^{\circ}\text{C}} \right], \ a \frac{\Delta V}{\Delta T} \Big|_{\text{HNLF} \text{DS}} = 0,4 \left[\frac{M}{c \,^{\circ}\text{C}} \right]$$

Спектральный состав излучения

Спектральный состав излучения

Спектр излучения на входе стенда и суммарный спектр ВРМБ излучения 10 первого и второго порядков от SMF-28 и DCF волокна

Спектральный состав излучения

11

Спектр излучения на входе стенда и суммарный спектр ВРМБ излучения первого и второго порядков от волокон HNLF и HNLF DS

Калибровка комплексов типа PDV

Калибровка комплексов типа PDV

Калибровка комплексов типа PDV

Общий спектр биений

Общий спектр скоростей

Калибровка комплексов типа VISAR

Временная характеристика переключателей

SMF-28 + DCF (4 км)

SMF-28 + DCF (2 км)

SMF-28 + DCF (1 км)

Длина	DCF _{врмБ} I, м/с	SMF-28 _{врмБ} I, м/с	DCF _{врмБ} II, м/с	SMF-28 _{вРМБ} II, м/с
4 км	4692±9	5484±27	9384±49	10968±41
2 км	4692±17	5493±16	9384±37	10986±47
1 км	4687±24	5488±23	9384±23	10994±33

Скорости совпадают с учетом погрешности.

Погрешность измеряемой скорости ультразвуковой волны составляет

~7% на левой границе диапазона и ~0,5% на правой границе диапазона.

Заключение

- Предложена оригинальная схема с многократным прохождением лазерного излучения через используемые оптические волокна, позволяющая формировать калибровочные линии в лазерно-интерферометрических приборных комплексах;
- Проведено экспериментальное макетирование данной схемы совместно со схемами регистрации PDV и VISAR и экспериментально подтверждена работоспособность предложенного решения;
- Экспериментально получены доплеровские линии на частотах от 1,1 ГГц до 21,6 ГГц, которые соответствуют скоростям от 800 м/с до 11 км/с. Погрешность измеряемой скорости ультразвуковой волны составляет ~7% на левой границе диапазона и ~0,5% на правой границе диапазона.

Спасибо за внимание

Тавлеев Алексей Александрович Научный сотрудник

Тел.: +7 (495) 321 49 66 E-mail: alaltav@mail.ru

22.05.2025 г.

